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nutrient sources, hydrologic transport, and erosion and sedi-Abstract
mentation processes. Of particular importance, is the applica-The 14,582 km2 Neuse River Basin in North Carolina was
tion of LC data for the generation of landscape-based assess-characterized based on a user-defined land-cover (LC) classi-
ment metrics to evaluate relative ecosystem condition over afication system developed specifically to support spatially
wide range of analysis scales (i.e., watershed to national) to as-explicit, non-point source nitrogen allocation modeling studies.
sess impacts attributable to human land-use activities (Wick-Data processing incorporated both spectral and GIS rule-based
ham and Norton, 1994; Jones et al., 1997; Riitters et al., 1997).analytical techniques using multiple date SPOT 4 (XS), Landsat

Currently, high priority non-point-source (NPS) issues are7 (ETM +), and ancillary data sources. Unique LC classification
focused on nutrient and sediment transport from the landscapeelements included the identification of urban classes based
to receiving streams. These NPS loadings are used to support theon impervious surfaces and specific row crop type identifi-
development of total maximum daily loads (TMDL) determina-cations. Individual pixels were aggregated to produce variable
tions of streams and rivers (USEPA, 1999). These dynamic, eco-minimum mapping units or landscape “patches” correspond-
system NPS processes function at multiple analytical scalesing to both riparian buffer zones (0.1 ha), and general watershed
and require relatively high-resolution geospatial data to sup-areas (0.4 ha). An accuracy assessment was performed using
port watershed-scale modeling efforts. Landscape parametersreference data derived from in situ field measurements and
required to support these spatially explicit modeling approaches,imagery (camera) data. Multiple data interpretations were used
include the identification and delineation of individual LC ele-to develop a reference database with known data variability
ments or “patches.” Landscape “patches” typically representto support a quantitative accuracy assessment of LC classi-
the primary modeling unit of a spatially explicit landscapefication results. Confusion matrices were constructed to incor-
model. They are defined in this study as contiguous and rela-porate the variability of the reference data directly in the
tively homogeneous LC types that can be repetitively mappedaccuracy assessment process. Accuracies were reported for
using remote sensor data.hierarchal classification levels with overall Level 1 classi-

The characterization of riparian buffer zones is required tofication accuracy of 82 percent (n � 825) for general watershed
evaluate their functional capacity and ecosystem value. Typi-areas, and 73 percent (n � 391) for riparian buffer zone
cally, riparian buffer zones are defined as areas directly adjacentlocations. A Kappa Test Z statistic of 3.3 indicated a significant
to the top-of-the-stream bank and extending outward in a per-difference between the two results. Classes that performed
pendicular direction for a distance of approximately 20 to 30 m.poorly were largely associated with the confusion of herba-
Riparian buffer zones play important functional roles in nutri-ceous classes with both urban and agricultural areas.
ent cycling and erosion/sedimentation deposition processes
(Verchot et al., 1998). Characteristics associated with high qual-Introduction
ity riparian buffer zones include the presence of well establishedLand-cover (LC) type, extent, and condition in both the spatial
natural vegetative cover to provide (1) stream bank stabilization;and temporal domains, represent important landscape charac-
(2) shading; and (3) a physical and biological barrier to the migra-terization elements. These data can be used to support environ-
tion of sediment, nutrients, and microbes from the surroundingmental monitoring and assessment efforts, and to study dynamic
landscape to receiving watercourses. Vegetated riparian buffersecosystem processes. LC characterization variables are required
also function as nutrient processors through the absorption andfor the study of numerous ecosystems processes, including hab-
assimilation of nitrogen and phosphorous compounds into soilsitat suitability, wetland functions, identification of non-point
and vegetative structures (Peterjohn and Correll, 1984). Associ-
ated microbial communities fix and process nutrients associated
with both surface water flow and shallow groundwater seepageR.S. Lunetta, J. Iiames, and A. Pilant are with the U.S. Envir-
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The objective of this study was to develop a multiple reso- thus negating the requirement for radiometric normalization of
data across multiple scene segments. Data obscured by denselution LC database for the Neuse River Basin (NRB) in North

Carolina that was used to support NPS nitrogen mass-balance clouds or flood inundation conditions due to Hurricane Floyd
were excluded from processing.modeling and hydrologic surface water transport to receiving

water courses across the Basin. To obtain the optimal classifica-
tion outcome, data subsets were analyzed using both super- Initial Classification

The NRB LC classification system included three hierarchicalvised and unsupervised spectral analysis, and a geographic in-
formation system (GIS) rule-based analytical data processing classification levels (see Table 2). Classifications were per-

formed using a hybrid approach that combined supervised, un-approach. A quantitative assessment of LC class accuracies was
performed using in situ field measurement and digital (cam- supervised, and rule-based classification techniques. First, a

supervised classification was performed that identified thoseera) imagery to provide a reference data source with known
variability for hierarchical classification of Levels 1, 2, and 3 pixels corresponding to unique image end-members (pure

spectral classes). Next, pixels representing more than one LCcorresponding to a user-defined classification system as modi-
fied from Anderson et al. (1972). class (mixed pixels) were each grouped and classified using an

unsupervised classification. The unsupervised classification
was applied sequentially to hierarchical image segments. Ar-Study Area

The NRB is contained entirely within the boundaries of the state eas that could not be assigned to a unique LC class were isolated,
spectrally grouped, and reprocessed. Ancillary GIS data wereof North Carolina (Figure 1). By definition, basin boundaries

correspond with the U.S. Geological Survey (USGS), six-digit used to refine the urban, agriculture, and water classes.
Classifications were performed using multiple dates of im-hydrologic unit code (HUC), code number 030202. The upper,

northwestern third of the basin is located in the Piedmont phys- agery in a composite analysis (CA) approach for each of the
eight processing areas. Because subsets had unique combina-iographic region and the remainder in the mid-Atlantic coastal

plain. The Piedmont portion of the Basin is characterized by tions of input images, data stacks ranged from 14 to 22 bands.
To standardize the approach, principal component (PC) trans-highly erodible clay soils, rolling topography with broad

ridges and stream valleys, and low gradient streams composed formation images were created for each area. The first eight
bands were then used to support the classification process. Inof a series of sluggish pools separated by riffles and occasional

small rapids. In contrast, the coastal plain is characterized by each case, the first eight PC bands accounted for more than 99
percent of the total data variance.flat terrain, “blackwater streams,” low-lying wetlands, and

productive estuarine areas. Elevations within the NRB range An automated training area identification process was
used to account for both within-scene spectral variance and in-from 276 meters in the western part of the basin to sea level at

the confluence of the Neuse River to Pamlico Sound that repre- herent within-class variability. Only the fall XS 1998 imagery
was used in this automated process because it was determinedsents the southern extent of the Albemarle-Pamlico Sound es-

tuary system which is bordered by a series of barrier islands that “change areas” were being selected on a disproportionate
basis using the multiple-date imagery. Additionally, the XSknown as the North Carolina’s Outer Bank (NCDEM, 1993).
data had low spectral variability in homogeneous areas relative
to the ETM+ data, and thus provided a more favorable environ-Methods

Imagery data used in support of the NRB analysis included two ment for training set selection. First, an ISODATA clustering was
performed on the 1998 XS image subsets that provided 32 clus-SPOT 4 (XS) data acquisitions (20 scenes) and three complete

sets of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) level- ters. Clumps of pixels greater than 5.8 ha were then selected
within each cluster class as prospective areas for signature ex-1G data (12 scenes), collected between fall 1998 and summer

1999. The 1998 XS imagery was first rectified to 1993 Digital Or- traction. Both the number and size of clusters influenced the
degree of cover-class generalization in the training area identi-tho-photo Quarter Quads (DOQQs), then re-sampled to 15- by

15-m pixels using a cubic convolution algorithm. This mosaic fication process. For example, increasing either the number of
clusters or the minimum size requirement, reduced the num-was used as the basis for all subsequent image-to-image rectifi-

cations of XS and ETM+ data. Data processing was performed ber of prospective training sites. The protocol was optimized
using a number of image subsets, different number of clusters,separately on a total of eight subsets that were subsequently as-

sembled to provide a final seamless NRB LC product. Subset and minimum size thresholds.
ARC/INFO polygon coverages were then developed to sup-boundaries were established based on the XS and ETM+ scenes

corresponding to imagery acquisition dates. The serial proc- port pixel-based signature extractions. Because polygon
boundary pixels had a high probability of being mixed, theyessing of individual image segments circumvented the vari-

ability associated with the different imagery acquisition dates, were excluded by buffering inside the polygons. All polygons
were buffered to distances of 15, 30, 45, and 60 m. Subsequent
to buffering, polygons were selected to represent each cluster
class starting with the 60-m buffer group and progressing to
lower buffer distances until an adequate number of polygons
were identified for each unique cluster class. Finally, the se-
lected polygon coverages corresponding to each unique spec-
tral cluster were used to identify potential training areas for
unique LC classes.

The polygon coverage was then converted to ERDAS/IMAG-
INE areas of interest (AOIs), or training sites, to develop repre-
sentative signature files corresponding to the eight-band PC im-
ages. A signature contingency classification (SCC) was per-
formed to evaluate training set purity. The SCC table compared
signature class statistics versus pixel signatures. Pure training
sites exhibited no confusion (off-diagonal values) and were se-
lected to develop the final signature files in PC space. The AOI

Figure 1. Neuse River Basin location map. corresponding to each training area was displayed on the fall
1998 XS false-color composite (FCC) and interpreted with the
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TABLE 1. SUMMARY OF NDVI FOR LATE GROWING SEASON IMAGERY DATES.aid of reference data within the context of the classification
CORN WAS HARVESTED BEFORE SEPTEMBER AND THUS LOW GREENNESS ATscheme (Table 1). Reference data included a series of 1998-

EITHER TIME. SOYBEANS WERE THE LAST CROPS TO BE PLANTED AND HARVESTED1999 National Aerial Photography Program (NAPP) color-infra-
AND TYPICALLY REMAINED GREEN THROUGHOUT THE FALL. HAY/PASTURE HADred photographs (1:40,000-scale), as well as basin-wide 1993

BIOMASS YEAR-ROUND; THUS, MINIMAL CHANGE WAS OBSERVED BETWEEN DATES.
DOQQs. Although this process provided high quality LC training THE PATTERN FOR TOBACCO AND COTTON TENDED TO FALL BETWEEN CORN
sites, it was deficient in the generation (discrimination) of AND SOYBEAN
land-use training areas. Accordingly, AOIs for land-use types

NDVI NDVI(i.e. maintained lawns) were identified manually.
Crop Type (September–October) (October–November)To implement the supervised classification, a maximum-

likelihood classifier (MLC) was first applied using equal prior Corn Low Low
probabilities (PP). The outcome class frequencies were then used Tobacco Low-medium Low

Cotton Medium Lowto calculate the PP for a second MLC. Several studies have deter-
Soybean High Low-mediummined that equal PP can be used in the MLC, but that actual PP
Hay/Pasture Medium-high Medium-highprovided for a more robust classification (Maher, 1985; Lee and

Landgrebe, 1991). Individual class verifications of the second su-
pervised classification (MLC with estimated PP) in the form of
manual reviews were performed to provide quality assurance for corn was harvested before September and resulted in no bio-

mass peak occurrence between the September and Novemberthe assigned LC labels and to identify confused training signa-
ture classes that represented more than one cover type. index period. Soybeans were harvested late in the season and

thus typically remained green throughout the fall with some se-An unsupervised classification was then used to improve
class assignments for pixels associated with confused training nescence occurring between October and November. Hay and

pasture had relatively stable levels of biomass in the fall andsignature classes. For example, the classes from the supervised
classifications that were confused among multiple cover types changed little between imagery data collections. Tobacco and

cotton tended to fall between the corn and soybean extremes.were processed independently to provide greater classification
detail. First, confused classes were grouped based on their gen- Due to the variability of planting and harvesting practices,

a small percentage of training data did not follow the typicaleral cover class. Confused class groups were then repetitively
clustered and labeled until all pixels were assigned to the most phenological patterns. Therefore, after NDVI labeling, cluster la-

bels were reassessed on a county-by-county basis and reas-representative cover class with minimal confusion.
signed from improbable classes to spectrally similar but more
probable classes. For example, any pixel in Beaufort CountySub-Level Classifications
that was found spectrally to be tobacco was changed to corn be-
cause there was only a three percent probability of finding aAgriculture and Herbaceous

Crop statistics (1999) for the counties within the NRB were ac- tobacco in the region, but a 39 percent probability for corn.
quired from the North Carolina Department of Agriculture and
Consumer Services (NCDA&CS). The probabilities of occurrence Wetland and Water

Water and wetland classes were based on the 1:24,000-scalewere computed for each crop type on a county level basis. Ma-
jor row crops included cotton, corn, soybean, and tobacco. All 1991-1992 National Wetland Inventory data (NWI) for North

Carolina, corresponding to the U.S. Department of Interior, Fishrow crops other than the crops listed above were categorized as
“other row crops” because they represented less than five per- and Wildlife classification system (Cowardin et al., 1979). Lo-

cations classified spectrally as water that did not occur in thecent of the total row crop acreage. Field-based ground truth
data were collected during the 1999 agricultural growing sea- NWI were labeled as ponds. In the editing process some pond

edges (soil) were determined to be incorrectly classed as urbanson and the post-harvest period during early 2000. Field data
were used to derive the phenologies for each major crop type. from the spectral data alone. To correct for these outliers, a 3-

by 3-pixel neighborhood majority algorithm was applied to ur-Aerial photographs and DOQQs were also used as reference
data to determine differences between row crops, pasture/hay, ban pixels. Urban pixels falling below this threshold were re-

coded to pond. NWI wetland scrub/shrub and forest were la-and transitional vegetation.
Of the five dates of satellite imagery available for our analy- beled as woody wetland, and emergent and aquatic beds were

labeled as herbaceous wetland.sis, only two dates were deemed useful for sub-level classifica-
tion of agricultural land. The fall 1998 SPOT (XS) data were ex-
cluded because they represented crop types from the previous Urban (Impervious)

The 1:24,000-scale DLG roads coverage was used to differentiallygrowing season, which were likely to have been different due to
crop rotations. Also excluded were the early spring 1999 SPOT buffer the primary, secondary, and tertiary road types. Primary

roads were buffered at 15 m, while secondary and tertiary roads(XS) imagery which was collected too early in the growing sea-
son and the July 1999 ETM+ imagery which was cloudy over were buffered at 10 m. The buffered roads were merged with the

urban pixels from the spectral classification. A 4- by 4-pixelmuch of the region. However, the September 1999 imagery was
relatively good and the October 1999 ETM+ imagery was high in neighborhood count (0.4 ha) was applied to determine the num-

ber of urban pixels surrounding the pixel of interest. Based onquality throughout the NRB. Even with the limited amount of
available temporal data, images that only corresponded to the this neighborhood analysis, an impervious surface image was

created, with urban pixels being assigned to high (12 to 16 urbanharvest period were useful in the classification of agricultural
pixels. neighbors), medium (7 to 11 urban neighbors), or low density (2

to 6 urban neighbors). Pixels were then re-coded based on a com-Normalized difference vegetation index (NDVI) images
were developed for the agricultural classes corresponding to bination of the spectrally determined LC class and the impervi-

ous level. For example, a pixel classed as deciduous and locatedthe two harvest periods. Next, ISODATA-based clustering was
performed on the combined NDVI images. The training data in a medium density impervious neighborhood was re-coded to

medium density urban-woody vegetation.were overlaid on the clusters in the two-dimensional feature
space and the clusters were labeled accordingly. The clusters
not associated with available training data were labeled based Spectrally Inseparable Areas

Some cover types were spectrally inseparable and requiredon the expected greenness response corresponding to pre-
dicted agricultural phenological time lines (Table 1). Generally, manual editing. On-screen digitizing was used to delineate
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Plate 1. Neuse River Basin land-cover classification results. Note the finer resolution mapping units in the riparian buffer zones
(0.1 ha) and coarser resolution watershed mapping units (0.4 ha).

AOIs for land-use types including golf courses, quarries, and the LC accuracy assessment, a “Virtual Field Reference Data-
base” (VFRDB) was developed for the NRB (Lunetta et al., 2001).maintained lawns in the large urban centers. For example,

pasture/hay pixels were re-coded to maintained lawns for golf The VFRDB provided an independent source of in situ measure-
ment and imagery (camera) data that was interpreted to pro-courses or within urban areas, and urban pixels were re-coded

to bare soil in areas identified as quarries. vide reference data that correspond directly to the NRB classifi-
cation systems. Two interpreters independently assigned class
labels corresponding to the NRB hierarchical classification sys-Final Data Processing

Using the cutline feature within ERDAS/IMAGINE, the eight sub- tem for 1,360 sampling sites within the study area. Interpreta-
tions were recorded as either a single (confident) call or as mul-set classifications were edge-matched to create a basin-wide

mosaic. Three separate minimum mapping units (MMU) filters tiple calls, which included the most confident (primary) and
less confident (secondary) class designations.were then applied to produce two separate LC coverages, each

with multiple MMUs. The finer resolution coverage included a The accuracy assessment procedure first incorporated an
analysis of interpreter calls to evaluate reference data variabil-five-pixel (0.1-ha) MMU for the riparian buffer zones (within 30

m of streams, canals, and rivers) and a 16-pixel (0.4-ha) MMU for ity. Second, an accuracy assessment was performed comparing
both interpreter calls to the LC classification results. This wasthe non-riparian areas of the watershed (Plate 1). The coarser

resolution product included the same five-pixel MMU within accomplished using both single and multiple class possibilit-
ies. Multiple class calls represented 11 percent, 23 percent,the riparian zone and a 256-pixel (5.8-ha) MMU outside the ri-

parian zone. and 25 percent of sampling points used for classification Levels
1, 2, and 3, respectively. A single class call occurred when both
interpreters had only primary calls that were an identicalAccuracy Assessment

An accuracy assessment was performed for classification Lev- match. Multiple class calls occurred when the interpreters pri-
mary calls were different or when secondary calls were encoun-els 1, 2, and 3. The classification results were compared to ref-

erence data (1998-1999) and reported in the form of error or tered. The maximum allowable number of calls was two and
were represented as 0.5 for each class. If the number of calls ex-confusion matrices (Story and Congalton, 1986). To support
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ceeded this threshold, secondary calls were dropped from the (6.3 percent), and ponds (6.5 percent). Wetlands were predomi-
nately woody (95.3 percent). The small fraction of barren landsaccuracy assessment analysis. Thus, fractional numbers appear

in the error matrices presented in this paper. (0.2 percent) were composed of non-vegetated (69.8 percent)
and transitional pioneer vegetation (30.2 percent).

Sampling Frame Design
The sampling frame design for the NRB-VFRDB was based on Reference Data Variability

The results of the reference data variability analyses are illus-three separate elements in an attempt to provide an adequate
distribution of sampling points across the entire watershed. trated in Tables 3, 4, and 5. It should be noted that only the pri-

mary interpreter calls were used in this analysis. Thus, multi-They incorporated a systematic unaligned random (SUR) sam-
ples based on the USGS Quarter Quadrangles (732 points), stra- ple secondary calls were omitted from the analysis (Table 3).

Level 1.0 overall agreement between interpreters ranged from atified random samples (SRS) based on the Multi-Resolution
Land Characteristics (MRLC) LCLU data (374 points), and ripar- high of 98.8 percent for wetlands to a low of 40.5 percent for

barren. Herbaceous also performed poorly with an agreement ofian multiple stratified random (RMSR) sampling of first- and
second-order riparian buffer zones (450 points). Riparian buffer 58.8 percent. The overall Level 1.0 agreement was 89.2 percent

(n � 1,360) with a Kappa statistic (KHAT) of 0.85. The major ar-zone stratifications included a systematic distribution of points
by 11-digit HUC, followed by multiple stratification based on eas of disagreement among interpreters was between the ag-

ricultural and herbaceous classes (n � 31), woody and herba-stream order and major LC type. The systematic unaligned sam-
pling element effectively provided an even distribution of ceous (n � 18), urban and woody (n � 12), and urban and

agriculture (n � 10).points across the entire study area, but resulted in an under-
sampling of rare classes. The stratified random design was per- Level 2.0 agreements are illustrated in Table 4 (a–f). The

best performing interpreter agreements were obtained for theformed to provide for sample intensification of the less abun-
dant classes throughout the watershed. Lastly, the systematic water (n � 35) and wetland (n � 84) classes (100 percent, re-

spectively). However, Level 2.0 sample numbers for thesemultiple random riparian design provided a representative
sampling of riparian buffer zone areas along the first- and sec- classes were insufficient for a rigorous statistical analysis. Ur-

ban classes had a 78.5 percent (n � 144) agreement and KHATond-order stream reaches. Sampling sites were circular plots
with a radius of 36.5 meters to provide a 0.4-ha plot. Of the total of 0.56, with disagreements almost equally distributed between

high and medium and medium and low density urban classes.1,360 sampling sites, 545 sites were sampled in 1998 and 815
during the 1999 field sampling seasons, coinciding with satel- Agricultural class agreement was 95.7 percent (n � 446) with a

KHAT of 0.83, with the majority of disagreement between fal-lite remote sensor data collections. It should be noted that
probability inclusions were not accounted for with either the low field (n � 15) and both row crops and pasture. Overall

woody vegetation class agreement was 89.5 percent (n � 446)SRS or RMSR sampling design elements.
with a KHAT of 0.83, and disagreements were nearly equally dis-
tributed among all classes (n � 47). Interpreter agreement forResults

The results of the LC classification are depicted in both tabular the two herbaceous classes was 83.7 percent (n � 49) with a
KHAT of 0.65. Data for the barren classes was not presented here(Table 2) and graphic (Plate 1) formats. Plate 1 serves to illus-

trate the multiple resolution characteristics of the landscape due to the insufficient sampling size (n � 9).
Data for two Level 3.0 classes were processed and are pre-“patches” that were mapped by the LC classification analysis.

Within the general watershed locations, “patches” were mapped sented in Tables 5a and 5b. Overall interpreter agreement for
low-density urban classes was 81.9 percent (n � 83) with aat a minimum resolution of 0.4 ha, while riparian buffer zones

were mapped at a 0.1-ha MMU. Riparian buffer zones were lo- KHAT of 0.67. Nearly all low-density urban disagreement was
between the woody and herbaceous classes (n � 13). Agricul-cated within a distance of two pixels (30 m) perpendicular from

the watercourse pixel(s). The resolution difference was appar- tural row crop class agreement was 94.7 percent (n � 339) with
a KHAT of 0.92. The single greatest interpreter disagreement wasent along the stream reaches in the enlargement of the Kinston

area where numerous fine resolution riparian features were between the cotton and corn classes (n � 7).
captured (Plate 1).

The distribution of LC types within the NRB were 13.5 per- Accuracy Assessment
An accuracy assessment of the LC classification map was per-cent urban, 29.3 percent agricultural land, 38.4 percent woody

vegetation, 0.1 percent herbaceous vegetation, 4.3 percent wa- formed for all Level 1.0 classes, three Level 2.0 classes, and one
Level 3.0 class. Assessments were not performed for the re-ter, 14.3 percent wetlands, and 0.2 percent barren land (Table

2). Urban classes were further subdivided into high (71 to 100 mainder of the Level 2.0 and 3.0 classes due to insufficient
sampling size to support a rigorous statistical analysis. The as-percent), medium (36 to 70 percent), and low (10 to 35 percent)

density classes based on the percent impervious surfaces. By sessment was performed using both primary and secondary
calls in the protocol described in the methods section. Thus,definition, any urban class with �49 percent impervious sur-

faces was dominated by another LC type and was assigned an non-integer numbers were incorporated into confusion matri-
ces. Assessments were performed independently for both theadditional (Level 3) classification identification. For example,

low density urban (10 to 35 percent impervious) represented SUR and RMSR sampling designs. The MRLC-based SRS provided
insufficient data corresponding to the intended rare classes69.7 percent of all urban classifications. Of these, 43.4 percent

were dominated by woody and 30.0 percent by herbaceous veg- (i.e., natural grassland and barren) to provide usable data. The
separate assessments for individual samples was required toetation. Of the agricultural lands, approximately 61 percent

were in row crop production, 39 percent in pasture/hay, and support a valid statistical analysis and also provided insights
relative to the performance of the disparate LC MMUs. Level 2.0less than 1.0 percent were fallow. Row crops were dominated

by soybeans (41.8 percent), cotton (24.9 percent), corn (23.2 and 3.0 accuracies were reported to provide an assessment of
errors introduced at each classification level. Total classifica-percent), and tobacco (10.1 percent). Woody vegetation was

further classified as deciduous (52.0 percent), evergreen (34.0 tion accuracy at any level or accumulated errors can be calcu-
lated using hierarchical multiplication. This method of re-percent), and mixed (14.0 percent). Herbaceous vegetation

(non-urban) was extremely rare, representing only 0.1 percent porting accuracies provided a more robust approach than the
reporting of a single total accuracy value.of the study area and was dominated by maintained grassland

(79.5 percent). Water classes were dominated by streams/ The overall Level 1.0 accuracies were 82 percent (n � 825)
for the SUR sample (Table 6a) and 73 percent (n � 391) for therivers/canals (75.0 percent), reservoirs (11.5 percent), lakes
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TABLE 2. NEUSE RIVER BASIN LAND-COVER CLASSIFICATION SYSTEM AND FINAL CLASSIFICATION RESULTS BY PERCENT [ ] FOR EACH CLASS TYPE CORRESPONDING

TO CLASSIFICATION LEVELS 1, 2, AND 3

Level 1 Level 2 Level 3

1.0 URBAN [13.5%] 1.1 High Density [14.0%]
(71–100% Impervious)

1.2 Medium Density [16.3%] 1.2.2 Agricultural Land [94.9%]
(36–70% Impervious) 1.2.3 Woody Vegetation [2.7%]

1.2.4 Herbaceous Vegetation [1.0%]
1.2.5 Water [1.4%]
1.2.6 Wetlands [0.0%]
1.2.7 Barren Land [0.0%]

1.3 Low Density [69.7%] 1.3.2 Agricultural Land [9.0%]
(10–35% Impervious) 1.3.3 Woody Vegetation [43.4%]

1.3.4 Herbaceous Vegetation [30.0%]
1.3.5 Water [15.7%]
1.3.6 Wetlands [1.1%]
1.3.7 Barren Land [0.8%]

2.0 AGRICULTURAL 2.1 Row Crops [60.8%] 2.1.1 Cotton [24.9%]
LAND [29.3%] 2.1.2 Corn [23.2%]

2.1.3 Soybeans [41.8%]
2.1.4 Tobacco [10.1%]

2.2 Pasture/Hay [38.6%]
2.3 Fallow Land [0.6%]

3.0 WOODY 3.1 Deciduous [52.0%]
VEGETATION 3.2 Evergreen [34.0%]
[38.4%] 3.3 Mixed [14.0%]

4.0 HERBACEOUS 4.1 Natural Grasslands [20.5%]
VEGETATION [0.1%] 4.2 Maintained Grasslands [79.5%]

5.0 WATER [4.3%] 5.1 Streams/Rivers/Canals [75.0%]
5.2 Lakes [6.3%]
5.3 Reservoirs [11.5%]
5.4 Estuaries [0.7%]
5.5 Ponds [6.5%]

6.0 WETLANDS [14.3%] 6.1 Herbaceous [4.7%]
6.2 Woody [95.3%]

7.0 BARREN LAND 7.1 Non-vegetated [69.8%]
[0.2%] 7.2 Transitional (Pioneer) [30.2%]

[Level 1] � Percent overall [Level 2] � Percent within class [Level 3] � Percent within subclass

TABLE 3. LEVEL 1.0 CONFUSION MATRICES FOR INTERPRETER A VERSUS B. OVERALL AGREEMENT WAS CALCULATED BASED ON A WEIGHTED AVERAGE OF COLUMN

AND ROW PERCENTAGES

Interpreter B

Urban Ag Woody Herb Water Wetland Barren Row Total % Agreement

Urban 144 3 0 5 1 0 1 154 94
Agriculture 10 446 7 9 0 0 8 480 93
Woody Veg 12 5 446 9 1 0 2 475 94
Herbaceous 5 31 18 49 1 1 1 106 46
Water 0 0 1 1 35 0 0 37 95
Wetland 1 0 0 0 0 84 0 85 99In

te
rp

re
te

r
A

Barren 3 1 8 2 0 0 9 23 39

Column Total 175 486 480 75 38 85 21 n � 1360

% Agreement 78 92 93 77 79 99 43
Total Agreement

Overall Agreement 85 92 93 59 87 99 41 673/825 � 82% K̂ � 0.85

RMSR sample (Table 6b). The Z statistic calculated for the seven- primarily attributed to the commission of herbaceous and bar-
ren areas. Woody vegetation classes were 80 (n � 275) and 78 (nclass matrix was 3.3 and represented a statistically significant

difference (1.98, p � 0.95). Urban results were 70 and 72 per- � 126) percent correct with classification errors attributed to
the omission of forested wetland classes and, to a lesser extent,cent, respectively, with the majority of errors attributed to the

commission of herbaceous classes and the omission of areas in- the commission of herbaceous areas. Water was correctly
mapped at 99 percent (n � 33.5). Wetland accuracy was 47 (ncorrectly classified as agriculture. Agricultural areas were 85 (n

� 259) and 79 (n � 88) percent correct with classification errors � 38) and 44 (n � 19) percent with the majority of errors dis-
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TABLE 4. LEVEL 2.0 CONFUSION MATRICES FOR INTERPRETER A VERSUS B. OVERALL AGREEMENT WAS CALCULATED BASED ON A WEIGHTED AVERAGE OF COLUMN

AND ROW PERCENTAGES

(a) Interpreter B

Land-Cover Classes
(Urban) HD MD LD Row Total % Agreement

High Density Urban (HD) 5 1 0 83
Medium Density Urban (MD) 13 21 5 54

6Low Density Urban (LD) 1 11 87 88
39

Column Total 19 33 92 99

% Agreement 13 64 95 n � 144 Total AgreementIn
te

rp
re

te
r

A

% Overall Agreement 30 58 91 113/144 � 79% K̂ � 0.56

(b) Interpreter B

Land-Cover Classes
(Agriculture) RC P/H F Row Total % Agreement

Row Crops (RC) 363 2 1 366 99
Pasture/Hay (P/H) 2 50 6 58 86
Fallow Field (F) 3 5 14 22 64

Column Total 368 57 21 n � 446

% Agreement 99 88 67 Total AgreementIn
te

rp
re

te
r

A

% Overall Agreement 99 87 65 427/446 � 96% K̂ � 0.86

(c) Interpreter B

Land-Cover Classes
(Woody Vegetation) D E M Row Total % Agreement

Deciduous (D) 215 7 2 224 96
Evergreen (E) 13 107 11 131 82
Mixed (M) 5 9 77 91 85

Column Total 233 123 90 n � 446

% Agreement 92 87 86 Total AgreementIn
te

rp
re

te
r

A

% Overall Agreement 94 84 85 399/446 � 90% K̂ � 0.83

(d) Interpreter B

Land-Cover Classes
(Herbaceous Vegetation) NG MG Row Total % Agreement

Natural Grasslands (NG) 13 8 21 62
Maintained Grasslands (MG) 0 28 28 100

Column Total 13 36 n � 49

% Agreement 100 78 Total AgreementIn
te

rp
re

te
r

A

% Overall Agreement 76 88 41/49 � 84% K̂ � 0.65

(e) Interpreter B

Land-Cover Classes
(Water) R L RES EST P Row Total % Agreement

Rivers (R) 23 0 0 0 0 23 100
Lakes (L) 0 2 0 0 0 2 100
Reservoirs (RES) 0 0 0 0 0 0 100
Estuaries (EST) 0 0 0 4 0 4 100
Ponds (P) 0 0 0 0 6 6 100

In
te

rp
re

te
r

A

Column Total 23 2 0 4 6 n � 35

% Agreement 100 100 100 100 100 Total Agreement
% Overall Agreement 100 100 100 100 100 35/35 � 100% K̂ � 1.0

(f) Interpreter B

Land-Cover Classes
(Wetlands) HW WW Row Total % Agreement

Herbaceous (HW) 4 0 4 100
Woody (WW) 0 80 80 100
Column Total 4 80 n � 84

% Agreement 100 100 Total Agreement

In
te

rp
re

te
r

A

Overall Agreement 100 100 84/84 � 100% K̂ � 1.0
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TABLE 5. LEVEL 3.0 CONFUSION MATRICES FOR INTERPRETER A VERSUS B. OVERALL AGREEMENT WAS CALCULATED BASED ON A WEIGHTED AVERAGE OF COLUMN

AND ROW PERCENTAGES

(a) Interpreter B

Land Cover Classes
(Urban) Ag Woody Herb Row Total % Agreement

Agriculture (Ag)
6 0 1 7 86Woody
0 22 7 29 76Herbaceous (Herb)
1 6 40 47 85

Column Total
7 28 48 n � 83

In
te

rp
re

te
r

A

% Agreement
86 79 83

Total Agreement K̂ � 0.67
% Overall Agreement 86 77 84 68/83 � 82%

(b) Interpreter B

Land-Cover Classes
(Row Crops) Cotton Corn Soy Tobacco Row Total % Agreement

Cotton 69 7 3 0 79 87
Corn 1 59 0 0 60 98
Soybeans 2 1 142 3 148 96
Tobacco 0 0 1 51 52 98

In
te

rp
re

te
r

A

Column Total 72 67 146 54 n � 83

% Agreement 96 88 97 94
Total Agreement

% Overall Agreement 91 93 97 96 321/339 � 95% K̂ � 0.92

TABLE 6a. LEVEL 1.0 CONFUSION MATRIX INCORPORATING MULTIPLE REFERENCE DATA INTERPRETATIONS (STRATIFIED UNALIGNED RANDOM)

Ground Visited Reference Data

Urban Ag Woody Herb Water Wetland Barren Row Total % Correct % Commission

Urban 67 6.5 2.5 17.5 0 0 2.5 96 70 30
Agriculture 13.5 259 11 14.5 0 1 7.5 306 85 15
Woody Veg 3 0 275 15 0.5 13 0.5 307 90 10
Herbaceous 0 1 0 0 0 0 0 1 0 100
Water 0 0 0.5 0 33.5 0 0 34 99 1
Wetland 0 0 40.5 0 1 38 1 80.5 47 53
Barren 0 0 0 0 0 0 0.5 0.5 100 0

Column Total 83.5 266 329.5 47 35 52 12 n � 825

% Correct 80 97 83 0 96 27 99

% Omission 20 3 17 100 4 73 1 Overall Accuracy
673/825 � 82%

TABLE 6b. LEVEL 1.0 CONFUSION MATRIX INCORPORATING MULTIPLE REFERENCE DATA INTERPRETATIONS (RIPARIAN MULTIPLE STRATIFIED RANDOM)

Ground Visited Reference Data

Urban Ag Woody Herb Water Wetland Barren Row Total % Correct % Commission

Urban 49.5 2.5 2 9 0.5 1 4.5 69 72 28
Agriculture 9 88 5 5 0 2 2 111 79 21
Woody Veg 9.5 5.5 126 10.5 0 10 1 162.5 78 22
Herbaceous 0 0.5 0.5 0 0 0 0 1 0 100
Water 0 0 1 0 2 0 0 3 67 33
Wetland 2 1.5 15.5 5 0 19 0 43 44 66
Barren 0 0 0 1 0 0 0.5 1.5 33 77

Column Total 70 98 150 30.5 2.5 32 8 n � 391

% Correct 71 90 84 0 80 59 6

% Omission 29 10 16 100 20 41 94 Overall Accuracy
285/391 � 73%

Z statistic (6a versus 6b) � 3.3. Difference test was significant (1.98, p � 0.95).
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tributed between woody vegetation commission and omission. 53 percent (n � 18.5), soybeans 73 percent (n � 45), and tobacco
52 percent (n � 12). Errors of commission and omission fairlyThe herbaceous and barren sampling sizes were insufficient

for statistical analysis. balanced and evenly distributed across all crop types.
Level 2.0 urban, agricultural, and woody vegetation classi-

fication results are presented in Table 7 (a–c) and Table 8 (a–c) Discussioncorresponding to the SUR and RMSR sampling design elements,
respectively. Analyses are not reported for herbaceous, water, LC Classification
wetland, and barren classes because of insufficient sampling The study goals were to create an LC classification for the NRB
sizes. Differentiation between high, medium, and low urban containing adequate categorical detail and sufficient spatial
classes were 87 percent, n � 67 (Table 7a) and 88 percent, n � resolution to support spatially explicit non-point source nitro-
49.5 (Table 8a). Agricultural areas were differentiated as row gen modeling efforts. A multi-resolution LC classification was
crops, pasture/hay, and fallow field, with an overall accuracy of developed to provide a high spatial resolution product devel-
78 percent, n � 258 (Table 7b) and 80 percent, n � 88 (Table oped on a cost-effective basis using currently available remote
8b). The majority of confusion was attributable to the omission sensor technologies and ancillary data to support non-point
of row crops and fallow fields that were incorrectly classified source modeling studies. The higher resolution riparian buffer
as pasture/hay. The results for differentiating between decidu- “patches” were obtained using an MMU of five adjacent pixels
ous, evergreen, and mixed forest types, was an accuracy of 72 (0.1 ha), while areas located outside riparian buffer zones were
percent, n � 275 (Table 7c) and 67 percent, n � 126 (Table 8c). identified based on a 16-pixel (0.4-ha) MMU. The multi-resolu-

The assessment of Level 3.0 classification results included tion product represented a trade-off between the maximum ob-
only row crop classes (Table 9). Agricultural row crops were as- tainable mapping resolution versus accuracy and repeatability.
sessed only for the 1999 growing season because of the avail- A significantly ( p � 0.05) lower accuracy was obtained for the
ability of multi-temporal ETM+ data to support NDVI analysis. riparian buffer zones versus the non-riparian buffer zone areas
The overall accuracy was 64 percent (n � 158.5). Individual (73 and 82 percent, respectively). Additionally, the reduced

MMU of riparian buffer zones would theoretically have a lowercrop types accuracies were cotton 67 percent (n � 25.5), corn

TABLE 7a. LEVEL 2.0 URBAN CONFUSION MATRICES INCORPORATING MULTIPLE REFERENCE DATA INTERPRETATIONS (STRATIFIED UNALIGNED RANDOM)

Ground Visited Reference Data

Hd Md Ld Row Total % Correct % Commission

High Dens Urban (Hd) 6 1 1.5 8.5 71 29
Med Dens Urban (Md) 1 13 1 15 87 13
Low Dens Urban (Ld) 0.5 3.5 39.5 43.5 78 22

Column Total 7.5 17.5 42 n � 67

% Correct 80 74 94

% Omission 20 26 6 Overall Accuracy
58.5/67 � 87%

TABLE 7b. LEVEL 2.0 AGRICULTURAL CONFUSION MATRICES INCORPORATING MULTIPLE REFERENCE DATA INTERPRETATIONS (STRATIFIED UNALIGNED RANDOM)

Ground Visited Reference Data

Rc P/H F Row Total % Correct % Commission

Row Crops (Rc) 173.5 6 4 183.5 95 5
Pasture/Hay (P/H) 33.5 28.5 11.5 73.5 39 61
Fallow Field (F) 1 0 0 1 0 100

Column Total 208 34.5 15.5 n � 258

% Correct 83 83 0

% Omission 17 17 100 Overall Accuracy
202/258 � 78%

TABLE 7c. LEVEL 2.0 WOODY VEGETATION CONFUSION MATRICES INCORPORATING MULTIPLE RREFERENCE DATA INTERPRETATIONS (STRATIFIED UNALIGNED RANDOM)

Ground Visited Reference Data

D E M Row Total % Correct % Commission

Deciduous (D) 107.5 11.5 24.5 143.5 75 25
Evergreen (E) 13 74 17.5 104.5 71 29
Mixed (M) 7.5 3.5 16 27 59 41

Column Total 128 89 58 n � 275

% Correct 84 83 18

% Omission 16 17 72 Overall Accuracy
197.5/275 � 72%
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TABLE 8a. LEVEL 2.0 URBAN CONFUSION MATRICES INCORPORATING MULTIPLE REFERENCE DATA INTERPRETATIONS (RIPARIAN MULTIPLE STRATIFIED RANDOM)

Ground Visited Reference Data

Hd Md Ld Row Total % Correct % Commission

High Dens Urban (Hd) 1 0 1 2 50 50
Med Dens Urban (Md) 0 6.5 0.5 7 93 7
Low Dens Urban (Ld) 0 4.5 36 40.5 89 11

Column Total 1 11 37.5 n � 49.5

% Correct 100 59 96

% Omission 0 41 4 Overall Accuracy
43.5/49.5 � 88%

TABLE 8b. LEVEL 2.0 AGRICULTURAL CONFUSION MATRICES INCORPORATING MULTIPLE REFERENCE DATA INTERPRETATIONS (RIPARIAN MULTIPLE STRATIFIED RANDOM)

Ground Visited Reference Data

Rc P/H F Row Total % Correct % Commission

Row Crops (Rc) 55 1 2.5 58.5 94 6
Pasture/Hay (P/H) 9.5 15 5 29.5 51 49
Fallow Field (F) 0 0 0 0 0 100

Column Total 64.5 16 7.5 n � 88

% Correct 85 94 0

% Omission 15 6 100 Overall Accuracy
70/88 � 80%

TABLE 8c. LEVEL 2.0 WOODY VEGETATION CONFUSION MATRICES INCORPORATING MULTIPLE REFERENCE DATA INTERPRETATIONS (RIPARIAN MULTIPLE STRATIFIED

RANDOM)

Ground Visited Reference Data

D E M Row Total % Correct % Commission

Deciduous (D) 60 8 5.5 73.5 82 18
Evergreen (E) 6 15 9.5 30.5 49 51
Mixed (M) 7.5 5.5 9 22 41 59

Column Total 73.5 28.5 24 n � 126

% Correct 82 53 38

% Omission 18 47 62 Overall Accuracy
84/126 � 67%

TABLE 9. LEVEL 3 AGRICULTURAL ROW CROPS (1999) CONFUSION MATRICES INCORPORATING MULTIPLE REFERENCE DATA INTERPRETATIONS (STRATIFIED

UNALIGNED RANDOM)

Ground Visited Reference Data

Ct Cn Soy Tob Row Total % Correct % Commission

Cotton (Ct) 25.5 5.5 4 4 38.5 67 33
Corn (Cn) 4.5 18.5 8.5 3.5 35 53 47
Soybeans (Soy) 4 10.5 45 2.5 62 73 27
Tobacco (Tob) 1 2.5 7.5 12 23 52 48

Column Total 34.5 37 65 22 n � 158.5

% Correct 74 50 69 55

% Omission 26 50 31 45 Overall Accuracy
101/158.5 � 64%

degree of repeatability. Based on these results, the benefit de- higher degree of accuracy and repeatability, was considered op-
timal for the modeling of non-riparian areas.rived from the delineation of finer scale riparian buffer zone

landscape elements that were considered important to ade- Unique aspects of the classification performed here in-
cluded the classification of urban areas based on imperviousquately model biological process associated with nutrients, can

be further evaluated. The coarser resolution “patch” size, with a surfaces, and the identification of specific row crop types for
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calendar year 1999. Urban classifications were accomplished Conclusions
using 15-m multi-temporal spectral data to first identify imper- The combined spectral and GIS rule-based analysis, performed
vious pixels, followed by a GIS rule-based neighborhood prox- sequentially on eight subsets representing the entire NRB, pro-
imity analysis (road networks) resulting in impervious class vided a quality LC product to support spatially explicit patch-
designations. Impervious class designations provided im- based nitrogen mass balance analysis and hydrologic model-
portant hydrologic modeling input data for the partitioning of ing efforts. Our analytical approach for characterizing impervi-
ground and surface water flow contributions, and to support ous surfaces should be applicable elsewhere in patchy land-
the development of rate functions for the transport of source ni- scapes with high biomass (or greenness) sufficient to provide atrogen to receiving streams. Additionally, impervious designa- high degree of contrast compared to impervious surfaces. Sim-tions will support the future development of landscape-based ilarly, methods used to differentiate crop types should be appli-metrics for aquatic indicators. cable in agricultural areas with moderate crop diversity andRow crop types corresponding to the four major NRB crops available detailed crop statistics. The application of multiplewere developed using a rudimentary phenology-based analy- interpretations for individual field reference data sites facili-sis to separate the known crop types. These delineations were

tated the incorporation of reference data variability directlydirectly incorporated into nitrogen mass balance calculations,
into the confusion matrices, which formed the basis of the LCwhich included both the quantification of differential nitrogen
accuracy assessment. This approach represents a relativelyfertilizer applications, nitrogen fixation and denitrification
simple approach for performing a quantitative accuracy as-processes, at the landscape “patch” scale of analysis.
sessment. The poor performance of herbaceous cover classesAlthough the overall classification accuracy was relatively
was attributed to the inclusion of land-use attributes into thehigh at 82 percent, there were deficiencies that were attributed
LC classification system. The incorporation of automated pat-to distinctions associated with land-use activities, as opposed
tern recognition algorithms could be used to minimize furtherto LC types. A recurring problem was that associated with dis-
confusion associated with herbaceous, urban, and agriculturaltinguishing between herbaceous type classes; i.e., differentia-
areas.tion between numerous maintained herbaceous cover types

and natural herbaceous vegetation. Specifically, confusion be- Acknowledgmentstween low/medium density urban manicured lawns and pas-
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