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Abstract

This study investigated elements important to regional
landscape assessments: (a) appropriate mapping spatial reso-
lutions (regional versus subregional), and (b) accuracy assess-
ment procedures (point-based versus area-based). The study
used MODIS NDVI time-series data to derive landcover products
(2007) in a study area within the Laurentian Great Lakes Basin
(GLB). Area-based reference data (i.e., “maplets”) were varied
in size and number to assess landcover proportionality agree-
ment and to provide accuracy assessment metrics generated
by point-based methodology. High spatial resolution Landsat
ETM data was used to assess pixel purity (pp) for the MODIS
250 m pixels imbedded within the maplets (i.e., percent homo-
geneous) for the dominant cover type. Comparisons between
the maplet reference data found a 21.7 percent variation in
accuracy values between PP50 percent (67.9 percent accu-
racy) and PP100 percent (89.6 percent accuracy). Point-based
accuracy assessments typically use 100 percent homogeneous
reference pixels to assess landcover products, positively bias-
ing the accuracy values. Our area-based methodology allows
for the assessment at varying reference pixel homogeneity.

Introduction

Numerous challenges are encountered in designing map-
ping methods and accuracy assessment procedures for
medium-to-coarse spatial resolution imagery for heterogene-
ous landscapes. To date, most of these products have been
developed at the global scale and are assessed for accuracy
using techniques suitable for finer resolution imagery. Here,
we investigated (a) appropriate mapping scale resolutions
(regional versus subregional), and (b) accuracy assessment
procedures (point-based versus area-based) for phenology-
based landcover classification using year 2007 time series of
the Moderate Resolution Imaging Spectroradiometer (MODIS)
Normalized Difference Vegetation Index (NDv1) for our study
area within the Laurentian Great Lakes Basin (GLB), USA. The
area-based method (i.e., “maplets”) was modified to address
the positive bias inherent with assessments that only include
100 percent homogeneous reference pixels. In our method
we are able to assess these coarser spatial resolution data at
varying pixel purity (pp) levels.

Mapping Scale lssues
Regional to global scale landcover maps (i.e., 250 m to
1.0 km) have been derived from numerous satellite remote
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sensing systems including the monis (Giri et al., 2005),

spOT Vegetation (Global Landcover 2000) (Bartholomé and
Belward, 2005), MERIS (GLOBcover) (Defourny et al., 2006),
and the National Oceanic and Atmospheric Administration
(NOAA) Advanced Very High Resolution Radiometer (AVHRR)
(IGBP-DISCover) (Loveland et al., 1999). Landcover classifica-
tion algorithms used at the global scale have been limited in
capturing the local and regional variations in landcover, due
in part to limitations in the number of training sites avail-
able to accurately represent regional areas. For example, the
MODIS classification algorithm uses a database of cover types
(n = 2000) to represent the entire globe. The Monis land team
has established these training sites to be geographically and
ecologically comprehensive (Muchoney et al., 1999).

An earlier global product developed from 1.0 km AVHRR
NDVI composites (IGBP-DISCover) (1992 to 1993) addressed the
large geographic extent issue by defining pseudo ecoregions
using an unsupervised classification clustering of the NDVI
data to identify areas of spectral similarity (Loveland et al.,
2000). A total of 961 clusters were identified globally with 205
located in North America. Friedl ef al. (2000) suggested that
subregional imagery differences between areas of similar veg-
etation composition may be responsible for inducing a unique
spectral signature. This effect seems to preclude the use of
smaller areas of interest when classitying large geographic
regions. It was posited that clouds may obscure similar sites,
creating a low NDVI signature in the shadowed area. Cover
type confusion also has been documented at higher latitudes
for phenology-based NDVI classification (Loveland et al., 2000;
Friedl et al., 2000). It should be noted that geographic strati-
fication may not vield significant classification accuracy dif-
ferences based on the classification algorithm employed. Shao
and Lunetta (2011) found that there were no advantages to
stratification of the entire GLB to a regional level using a neural
network (NN) classifier. However, in that study, the limiting
factor seemed to be the small percentage of training pixels.

Accuracy Assessment Issues

Assessing the accuracy of these coarser spatial scale resolu-
tion maps requires a deviation from the normal one-to-one
(pixel-wise) assessment process where one homogeneous ref-
erence pixel, typically derived from higher resolution data are
compared to the similar pixel with associated thematic label.
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At issue is the dominance of non-homogeneous reference
data in moderate-to-coarse spatial resolution imagery, where
data resolution range from 10° to 10° m multiple landcover
types dominate (Cihlar et al., 2000). For example, a study

in the Albemarle-Pamlico Watershed of North Carolina (NC)
and Virginia (vA) found that only 6.0 percent of all the 250 m
pixels were composed of a single landcover type (Knight

et al., 2006). The low proportion of homogeneous reference
pixels within a classification scene will affect the application
of a standard confusion matrix-based accuracy assessment
approach for coarser spatial resolution mapping products.
Statistics generated from the confusion matrix are statistically
valid based on the assumption that samples are derived from
relatively pure pixels of discreet cover classes (Foody, 2002).
That is, the Kappa coefficient implicitly assumes that the
testing sample is homogeneous. With finer resolution imagery
(e.g., 10 to 30 m), reference samples are constrained to homo-
geneous areas with respect to one cover type. Additionally, to
ensure that homogeneous pixels are not contaminated with
spectral bleeding from adjacent pixels, reference pixels are
usually selected within a cluster of pixels of the same cover
type. Accuracy statements made from contingency tables
generated from these pure reference pixels tend to be opti-
mistically biased (Plourde and Congalton, 2003). The lack of
pure reference data, typical with coarser resolution data, also
affects selecting a sample size capable of generating statisti-
cally valid accuracy statements across all cover classes, where
a standard sample size of n = 50 per landcover class has been
suggested (Congalton and Green, 2009).

Some have suggested that the more reasonable assess-
ment process for moderate-to-coarse resolution landcover is
to derive areal sampling documenting the fractions of cover
types present (Knight et al., 2006; Latifovic and Olthof, 2004).
One method, referred to as the maplet method (i.e., “area-
based”, “non-site specific”), allows the level of “correctness”
to be assessed based on the agreement between the maplet
reference cover proportions and the classification cover pro-
portions of the same maplet areas (Latifovic and Olthof, 2004).

Maplets are higher spatial resolution maps of small geo-
graphic areas used to assess the accuracy of coarser resolution
maps (Chrisman, 1991). Maplets were developed initially
as a validation approach for large area datasets to deal with
the issue of assessing class accuracies across a large number
of classes. This methodology was first posited by Chrisman
(1991) and further elucidated in practice by Stoms (1996).
Lioubimtseva and Defourny (1999) compared the total area of
cover types throughout three large maplet areas ranging from
approximately 5,137 to 6,225 km®. Beyond the comparison
of landscape proportions, they also assigned dominant cover
type labels to each pixel (30 m?) within the maplet areas
to generate contingency tables to compare total, user’s and
producer’s accuracies between areas. Stoms (1996) used only
one large maplet (2,240 km?) for San Diego County, California
Cihlar et al. (2000) used a tiling design to refine mapping
cover type proportions from 1.0 km AVHRR data in order to
compare proportions derived from the coarser AVHRR data
resampled to a 30 m spatial resolution. Though not strictly
defined as “maplets,” this research investigated scaling issues
associated with area-based assessments at three spatial scales,
30 m, 480 m, and 1.0 km. Schneider et al. (2003) implemented
three maplet methods to supplement traditional accuracy
assessment procedures in urban areas by fusing multiple
sources of coarser resolution imagery. This research illus-
trated the benefit of areal comparisons to better understanding
the nature and quantity of errors. For example, a comparison
of reference maplets derived from the National Land Cover
Database (NLCD), provided locational information leading
to the identification of error type that revealed registration
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errors as the primary error component associated with urban
cover extent. They also cautioned that the maplet aggregation
method may introduce additional error sources (Schneider

et al., 2003).

Study Objectives

The objectives of this study were (a) to investigate scaling
(regional to subregional) impacts on classification accuracies
using 250 m multi-temporal NDvI imagery for 2007, and (b) to
compare two accuracy assessment approaches: area-based and
point-based. Here, we define regional (Omernik Level IIT) and
subregional (Omernik Level IV) scales based on Omernik’s
classification of ecoregions within the contiguous United
States (Omernik, 1987). We employed a novel methodology of
distributing multiple smaller maplets throughout the classi-
fied image and determine the optimal maplet resolution and
maplet numbers for classification assessment. First we clas-
sified the larger regional scale (115,934 km?*) Omernik Level
I1I (o1.3) ecoregion (“Northern Hardwood Forest”) using ENVI's
Spectral Angle Mapper (sam), a hyperspectral image classifi-
cation technique applied to continuous time-series NDvI for
four cover types (woody deciduous and coniferous vegetation,
barren, and grass). Then, we applied the same classification
algorithm across 30 smaller subregional scale Omernik Level
IV (0L4) ecoregions nested within the larger OL3 ecoregion.

To test regional/subregional classification impacts we com-
pared both 013 and OL4 classifications against a reference
dataset derived from the 2006 NLCD. Finally, both classifica-
tions (regional and subregional) were assessed over one 014
ecoregion extent (Toimi Drumlins) using point-based and
area-based accuracy assessment procedures.

Study Area

We performed classifications within an ecoregion sub-basin
structure for the United States portion of the GLB correspond-
ing to the Omernik Ecoregion Classification System. Omernik
developed the ecoregions for the conterminous US at four
levels, with subdivisions predicated on “perceived patterns of
a combination of causal and integrative factors including land
use, land surface form, potential natural vegetation, and soils”
(Omernik, 1987). The US portion of the GLB is composed of 12
OL3 ecoregions covering 328,128 km* with over one-third of
the area comprising the Northern Lakes and Forests Ecoregion
(Omernik Code = 50). 0L3 designations were designed to
address regional analysis, whereas OL4 designations provide
useful information at the local level of analysis. The 0OL3
Northern Lakes and Forests Ecoregion is further segmented
into 30 distinct OL4 ecoregions ranging between 1 to 7 percent
of the oL4 parent region (Figure 1).

The area-based versus point-based accuracy assessment
comparisons were focused within the oL4 Toimi Drumlins
ecoregion (5,473 km?) nested within the larger OL3 ecoregion,
or 4.4 percent of this area. The Northern Lakes and Forests
ecoregion is characterized by nutrient-poor glacial soils
dominated by coniferous and northern hardwood forests. The
glacial processes on this ecoregion have produced undulat-
ing till plains, morainal hills, broad lacustrine basins, and
sandy outwash plains. The Toimi Drumlins, located north by
north-east of Duluth, Minnesota, are described by a rolling
topography of ridge and troughs where drumlins are typically
1.6 km long, 0.4 km wide, 9 to 16 m high, and oriented in a
southwest-northeast direction. Soils are medium to coarse-
textures of Superior and Rainy Lobe glacial till. Inter-drumlin
areas are poorly and very poorly drained and vegetation is
dominated by aspen-birch, spruce-fir, white-red-jack pine, and
oak-hickory cover types.
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Figure 1. The oL4 ecoregions (n = 30) within the oL3 Northern Lakes and Forests Ecoregion of

Methodology

Overview

Classifications were performed using biweekly time-series
MODIS NDVI (2007) at two ecoregional levels (OL3 and 0L4)
with training sites selected specific to those two ecoregions
(Figure 2). To allow for direct comparison between the two
classifications, the OL3 classification was subset to the 30 0L4
ecoregions geographic extents (Figure 1). Traditional point-
based accuracy metrics (i.e., percent correct, commission and
omission errors, Kappa analysis, etc.) were generated for the
30 oL3 and OL4 classifications using a reference dataset devel-
oped from the 2006 NLCD (Figure 2). Site-specific “traditional”
point-based accuracy methods were then compared with
non-site specific “maplets” area-based procedures in assessing
accuracy metrics for both 0L3 and oL4 classifications over the
Toimi Drumlins or.4 Omernik ecoregion (Figure 2). Data used
with this experimental design is summarized in Table 1.

MODIS NDVI Preprocessing

The MoDIS 250 m NDVI product (MOD13Q1) was downloaded
for a seven-year period (2000 to 2007) from the usGs Land
Processes Distributed Active Archive Center (https://Ipdaac.
usgs.gov/) to support phenology-based classifications across
the GLB. The MOD13Q1 product consisted of 23 scenes
developed from 16-day composites over the one calendar
year. Though data for all seven years was collected in order to
provide the necessary inputs for a missing data/cleaning algo-
rithm developed internally at the Environmental Protection
Agency (Epa) (Knight et al., 2006), only the 2007 (n = 23)

was used for classification purposes. Data were reprojected
from the native sinusoidal projection to the Albers-equal area
conic projection using a nearest-neighbor operator. Next, each
individual scene was clipped to the GLB boundary layer and
sequentially stacked. A series of filtering and cleaning steps
were applied to the NDVI data stack based on the filtering
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and cleaning algorithm detailed in Lunetta et al. (2006). The
resulting filtered and cleaned 2007 NDv1 datastack for the GLB
was then temporally subset to 12-bands corresponding only
to the March through October growing season (determined
by nDvI deciduous leaf growth/senescence curves), thereby
reducing the contamination of snow and ice existent over a
significant portion of the calendar year.

Classifications

The GLB landcover classification included seven classes
(water, urban, barren, deciduous woody vegetation, conifer-
ous woody vegetation, grass, and agriculture), however only
four (woody deciduous and coniferous vegetation, barren,
and grass) classes were used in this study. Water pixels were
excluded because they were not pertinent to the study and
agricultural pixels were previously assessed by Shao et al.
(2010). The urban component of the classification was not
included in this study based on the failure of applying a
previously successful methodology using the Sequential
Maximum Angle Convex Cone (smMacc) endmember model
(Gruninger et al., 2004) to identify urban endmembers from
the temporal data.

For the 01.3 classification (regional extent), we used the
saM hyperspectral classitying algorithm to classify multi-
temporal NDVI data across the GLB. This saM method was
implemented in the GLB due to the high mapping accuracies
derived from the Albemarle-Pamlico watershed mapping pro-
ject (Knight et al., 2006). Training data was visually identified
for all four classes using (a) Landsat-7 sLc-on (1999 to 2003)
leaf-off imagery including NDVI (used to distinguish conifer/
deciduous differences), (b) usba 2007 digital orthophoto quar-
ter quadrangles (D0OQQs), (c) forest cover inventory data from
the Minnesota Department of Natural Resources (DNR) (Forest
Inventory Management (FIM)), Wisconsin DNR (Wisconsin
landcover data (WISCland)), and the Michigan DNR (Integrated
Forest Monitoring, Assessment, and Prescription (1rMAP)), and
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Figure 2. Tier (1) Regional/Subregional Classification Analysis: MODIS 250 m NDVI
data (MOD13Q1) is cleaned, masked, and subset to the LB boundary. Next,
the MOD13Q1 data are temporally subset to year 2007 (April to October) and
then clipped to the Omernik oL3 Ecoregion (Northern Lakes and Forests); then
that region is clipped into the 30 finer oL4 Omernik Ecoregions. sam classifiers
map the one oL3 and 30 oL4 ecoregions and point-based accuracy assessments
using the NLCD 2006 are applied to test regional versus sub-regional mapping.
Tier (2) Area: versus Point-based Accuracy (Maplets): Multiple maplets (30)

are generated to test both the 0L3 and oL4 classification in one oL4 ecoregion
(Toimi). Maplets are created from 1sopaTA unsupervised classification of Land-
sat T™M data. Point-based assessments are generated for both classifications
using the NLCD 2006 dataset as reference. Maplets provide areal comparisons
and also allow for the varying of reference pixel homogeneous levels to create
accuracy values at varying pixel purity levels.

(d) 100 percent homogeneous 250 m pixels derived from the
2006 NL.CD. These training data at the 013 level were distrib-
uted across the entire region, typically acquiring three to four
signatures per class; increasing the number of signatures per
class beyond this range contributed to more confusion in the
resulting classification. Temporal training signatures, defined
as endmember spectra in ENVI, were retrieved using ERDAS
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Imagine®, then saved as a text file and later imported into
ENVI. The Spectral Angle Mapper (saM) algorithm uses an
n-dimensional angle to match unclassified pixels to a refer-
ence signature. Here, temporal NDvI value similarity between
the training data and the unclassified pixel is determined by
comparing the angle between the two values, treating these
values as vectors in a space with dimensionality equal to the
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Taste 1. Data Summary. T1 - Tier 1 (RecionaL versus Susreaional Mapping Comparison) T2 - Tier 2 (Area-sasen MapLETs versus PoINT-BASED
Accuracy Assessment Proceoures): DNR — Department oF Naturar Resources; M1 — Mickican; MN — Minnesota; Wl — Wisconsing
USDA — Unitep States DeparTMENT oF AGRicULTURE;*R — rasTER; ** P — poLveon; *** patH/Row

Data Type/Scale Data Origin Data Origin Type/Scale  # Bands Dates Purpose Study
Water Mask R/250 m ETM+/TM "*"(21/29-30; ‘R/30 m 4 Mask GLB T1/T2

22/28-30:23/28-29;

24/27-28; 25/27-28;

26/27-28; 27/27-28)
Urban Mask R/250 m NLCD 2006 R/30 m 1 Mask GLB T1/T2
AG Mask R/250 m NLCD 2006 R/30 m 1 Mask GLB T1/T2
MODIS NDVI R/250 m MOD130Q1 R/250 m 189 2000-2007 Data clean T1/T2
MODIS NDVI  R/250 m MOD13Q1 R/250 m 12 2007 Classify T1/T2
Landsat 7 R/30 m ETM+ (21/29-30; R/30 m 4 1999-2003 Train T1/T2

22/28-30;23/28-29; (leaf-off)

24/27-28; 25/27-28;

26/27-28; 27/27-28)
USDA 2007 R/0.5m USDA R/0.5m 4 2007 (leaf-on)  Train/Assess T1/T2
DOQQs
MN FIM P/NA MN DNR “PINA NA Train/Assess T1/T2
WISCland R/30 m WI DNR R/30 m 1 Train/Assess T1
MI TFMAP P/NA MI DNR R/30 m 1 Train/Assess T1
PP100% LC R/250 m NLCD 2006 R/30 m 1 Train T1/T2
PP70% LC R/250 m NLCD 2006 R/30 m 1 Assess (point) T1
PP100% LC R/250 m NLCD 2006 R/30m 1 Assess (point) T2
OL3 R/250 m OL 3 P/NA 1 Define region T1/T2
OL4 R/250 m OL 4 P/NA 1 Define subregion  T1/T2
Maplets R/250 m ETM+ (26/27-28) R/30 m 4 10/5/2002 Assess (area) T2

number of bands (Kruse et al., 1993). Finally. the completed
0L3 classification was subset to the OL4 (n = 30) ecoregion
boundaries to facilitate direct comparisons. This same clas-
sification process was repeated for each OL4 ecoregion (n =
30), however training data was specific to individual ovL4
ecoregions.

MODIS NDVI Analysis

To first address the regional versus subregional classification
issue of coarser spatial resolution imagery we attempted to
geolocate accuracy assessment point-sample locations that
were 100 percent homogeneous with respect to pixel purity
(i.e., PP100). To achieve the minimum number of samples
per class (n = 50) (Fry et al., 2011), =6,000 PP100 pixels (i.e.,
30 OL4 ecoregions x 4 classes x 50 points/class = 6,000) were
needed based on the 30 oL4 regions for four cover types.

To ensure pixel purity, areas containing numerous contigu-
ous PP100 pixels are commonly used for sub-sampling to
offset any geometric registration issues and minimize spec-
tral contamination from adjacent pixels. However, only 750
pixels across all 30 014 ecoregions met these criteria, Also, a
majority of the available reference pixels were predominantly
deciduous and coniferous. To compare classifications across
the 0L4 ecoregions, we relaxed the pixel purity requirement
to PP70 (i.e., 70 percent one cover type) and utilized isolated
pixels. We used the NLCD 2006 to create a majority reference
map identifying all 250 m pixels dominated (>70 percent)
by one cover type (n = 611,636) (Wickham et al., 2013).

To identify PP70 pixels, NLCD cover type proportions were
calculated using Matlab software for every 250 m pixel loca-
tion within the US portion of the GLB. Each NLCD cover class
was converted to an ERDAS Imagine® IMG file and stacked
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to provide all 15 NLCD classes in one IMG file using ERDAS
Model Maker. This datastack was consolidated into a 1-band
reference image file where cells were populated by PP70 nLCD
landcover for all 15 classes. Reference grid structure adhered
to the MODIS 250 m grid structure to allow for direct compari-
son. Regional and Subregional (013 and 0v4) classifications
were assessed across the OL4 subregional extents for basic
correspondence to the selected reference dataset using the cIs
Analysis Summary Module in ERDAS Imagine®. Results were
transferred to error matrices and accuracy statistics were gen-
erated for overall accuracy, commission and omission errors,
Kappa and Z-statistics.

To compare area-based maplets versus point-based accu-
racy assessment procedures, point-based and area-based refer-
ence datasets were developed for the Toimi Drumlin OL4 ecore-
gion (Figure 1, [50p]). For the point-based dataset, a total of
127 PP100 percent pixels completely contained within similar
landcover pixels were identified within this 014 ecoregion. To
ensure correct labeling of the reference pixels, ancillary datasets
were visually compared to the 127 reference pixels (These data-
sets were explained earlier in the “Classifications” section of
this paper). The area-based maplet reference dataset was devel-
oped by creating a 25 x 25 grid (cell size = 5 x 5 km, n = 625)
which was superimposed over the oL4 Toimi Ecoregion bound-
ary. This grid was developed using the “create fishnet” tool
under the X Tools dialogue in Esri ArcMap®. We selected all
5 x 5 km cells (n = 173) that were completely contained within
this Toimi Drumlin oL4 ecoregion and randomly selected 30 of
these cells (i.e., maplets) for processing (Figure 3). A sample of
n = 30 was chosen based on the results from Cihlar et al. (2000)
to provide the minimum sample size required to retain cover
composition. They found that +£7 percent area sampled was
required for 30 m data and +15 percent for 500 m, where gains
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Figure 3. The Toimi Drumlin oL4 ecoregion [50p] and the distribution of randomly selected
5 x 5 km maplets (n = 30).

of increased sampling thereafter increased at a decreasing rate.
By sampling 17 percent of the Toimi Drumlin Ecoregion, we
exceeded this convergence point.

Next, we downloaded two 05 October 2002, Landsat ETM+
scenes for image processing (path/rows: 26/27 and 26/28).
These scenes met the requirements for spectral similarity,
low cloud cover (<10 percent), leaf-off/snow-free landscape
conditions, and temporal target window (2007). To ensure that
cover composition did not change within the 30 maplet areas,
the imagery was checked against the 2007 leaf-on DoQQs. All
maplets within the ecoregion showed no significant change
compared to the 2007 DoQQs and the Landsat ETM+ imagery
and thus were appropriate to support the analysis. We also
used the NLCD 2006 landcover change product to confirm our
visual inspection where <2.1 percent change was detected
within the 30 maplets between 2001 and 2006 (Fry et al.,
2011). This dataset was developed supplementary to the 2006
NLCD where an algorithm isolates spectrally changed pix-
els along with the change trajectory (increase or decrease in
biomass).

The 30 maplet areas were independently classified using
the 1soDATA algorithm, where spectrally similar clusters were
later manually labeled as (a) water, (b) urban, (c) barren, (d)
deciduous woody vegetation, (e) coniferous woody vegetation,
and (f) grassland. This maplet classification approach was also
implemented by Lioubimtseva and Defourny (1999) where
they combined a maximum likelihood supervised classifica-
tion with an unsupervised algorithm (1s0DATA) to produce
maplets with four to seven cover types. The dominant and the
percent cover by class for each 250 m pixel per maplet area
were calculated. Each 5 x 5 km maplet was also reduced to
four additional resolutions (1 x 1 km, 2 x 2 km, 3 x 3 km, and
4 x 4 km) to test the appropriate maplet resolution for assess-
ments. These maplet reductions were all centered about the
center 30 m pixel of the original 5 x 5 km maplet. The same
supplemental datasets used to confirm the cover types for the
127 pixels in the point-based reference dataset were also used
to ensure label accuracy with the 30 selected maplets.
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Both a point and area-based analysis of classification
accuracies for 0L3 (regional) and or4 (subregional) products
were compared across the Toimi Drumlins 0L4 ecoregion
extent. The barren class was eliminated from the assessment
process due to the insignificant representation resulting in a
three class assessment. A point-based accuracy assessment
was first applied to both the 0L3 and OL4 classification results
using randomly selected reference points (n = 127; PP100 per-
cent). Overall map and per-class accuracy were calculated
through map-reference comparisons using contingency tables
(Congalton, 1991). Errors of omission and commission were
ascertained though the calculation of user’s and producer’s
accuracies. Kappa statistics were also generated to determine
if the values contained in an error matrix represented a result
significantly better than random (Congalton and Green, 2009).
A Z-statistic was generated for both error matrices using a
pair-wise comparison (Jensen, 1996) to test the independence
of Kappa values. Proportional cover type values were com-
pared across the 30 maplet areas (25 km? or 5 x 5 km) within
this same OL4 ecoregion and point-based assessments (PP =50
to 100 percent) were generated for only the 250 m pixels
within the 30 maplet areas to observe the effects of pixel
heterogeneity on overall accuracy. Finally, we investigated the
impact of maplet size classes versus accuracy results for five
resolutions (1 x 1 km, 2 x 2km, 3 x 3 km, 4 x 4 km, and 5 x
5 km) and we also tested the optimal number of maplets using
only the 5 x 5 km maplet size.

Results and Discussion

Regional /Subregional Land Cover Comparison Analysis

Landcover across the Northern Lakes and Forests Ecoregion
extent was completed at the OL3 (regional) level, then strati-
fied into 30 014 (subregional) ecoregional extents to allow for
direct comparison with the 30 oL4 derived landcover products
(Figure 1 and Plate 1). Overall classification (i.e., both com-
bined 30 0L4 ecoregions and single OL3 ecoregion) accuracies

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



0 15 30
I Kilometers

(a)

Plate 1. A comparison classification results for (a) oL3, and (b) oL4 classifications across the oL4 Toimi
ecoregional extent (dark green: coniferous forest and light green: deciduous forest).
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were similar for both the 0L3 (83.3 percent) and 0L4 (85.8 per-
cent) products (Figure 4); however a pairwise Z-statistic test
indicated that they were significantly different (Z = 22.55; p
= 0.05). Comparing 0L4 and OL3 classifications across all 30
ecoregional extents indicated that the subregional 014 accura-
cies were superior to the regional oL3. Pairwise comparisons
showed that 19 of 30 oL4 classifications had higher accuracies
with nine of 19 014 classifications exhibiting a >5 percent
accuracy differential and four of 19 exceeding the 10 percent
differential (Table 2). In Figure 5, only two of the 11 classifi-
cation comparisons where the OL3 accuracy value exceeded
the 014 classification resulted in a >5 percent accuracy

100.0

95.0

90.0

-]
=)
=]

80.0

75.0

Overall Accuracy (%)

¥
=
=

65.0

60.0

QL3 OL4

Figure 4. Point-based overall accuracy box and
whisker plots £1.0 standard deviations about the
mean (solid line), median (dashed line), minimum,
and maximum value outliers for oL3 and oL4 classifi-
cations (n = 30).
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differential. OL3 versus oL4 classification Z-statistic differ-
ences (p = 0.05) were observed in 25 of the 30 comparisons
(Table 2). Kappa coefficients for the 0L3 classifications showed
moderate agreement across most of the 30 sites (68 percent),
similar to those achieved for 0L4 classifications (73 percent).
Also, commission and omission errors were lowest for the
deciduous and coniferous classes for both classifications,
with the deciduous being lowest (Figure 6). This may have
been a result of wetter soil conditions within the coniferous
areas because wetland categories were not considered (Watt
and Heinselman, 1965). A majority of the wetlands within the
study area are spruce dominated.

In summary, OL4 classifications performed consistently
better across all 30 OL4 ecoregional extents when compared
to the corresponding OL3 classification. This was attributed
to a number of underlying issues specific to the GLB area that
tended to increase the variability of temporal NDVI signatures.
These included climatic variability due to lake influences,
snow cover periodicity, and data quality issues associate
with high latitude areas. Also, the wide MODIS scan angle can
cause regional variation in NDVI values. As the view angle
increases beyond nadir the sensor field of view includes
fewer shadowed components and more illumination of the
canopy elements (Gupta, 1992). Statistically significant
differences were among 25 of the 30 or3/014 classification
comparisons. The five locations that resulted in no signifi-
cant differences were attributed to the similarity between
training signatures and NDvI values of a particular cover
type across multiple OL4 ecoregions. Also, if we assume
that accuracy ditferences of <5 percent between 0L3 versus
OL4 comparisons were a function of classification noise and
intrinsic reference database errors (Lunetta et al., 2001), then
the oL4 classifications soundly outperformed oL3. Although
an overall accuracy difference of 2.5 percent was observed
between the two classifications, a majority of subregional dif-
ferences occurred in the pair-wise comparisons at all 30 oL4
ecoregional extents.

Navember 2013 1021



Tagte 2. Accuracy (ACC), Karpa, anp Pairwise Z-statisTic Resuirs For OL3 ano OL4 CrassiFications across THE 30 OL4 Ecorecions.

(*Percentace oF PP70% NLCD 2006 Tramwing Data per OL4 Ecorecion)

OL4 Area (km?)  Reference Area (%) ACC (OL3)%  ACC (OL4)%  Diff (OL3-OL4)%  Kappa (OL3) Kappa (OL4) 7, Stat
50a 6449.7 41.6 84.6 77.0 -7.6 0.52 0.38 19.86
50aa 6540.8 17.9 73.5 79.6 6.1 0.47 0.54 8.03
50ab 3304.2 11.8 66.3 70.4 4.1 0.40 0.40 0.13
50ac 4616.8 22.4 76.4 76.1 -0.3 0.37 0.32 4.74
50ad 3620.4 44.7 86.8 88.8 2.0 0.42 0.45 2.06
50ae 11656.1 30.4 85.7 84.5 -1.2 0.73 0.71 4.29
50af 7864.6 22.0 78.9 86.2 7.3 0.47 0.53 5.75
50ag 4323.1 32.0 86.2 88.2 2.0 0.66 0.67 0.88
50ah 3109.9 10.8 82.8 77.5 -5.3 0.59 0.54 3.21
50b 3435.5 38.9 94.4 95.4 1.0 0.48 0.45 1.48
50c 1589.1 61.0 85.1 83.6 -1.5 0.64 0.58 6.66
50d 5150.5 51.0 74.1 85.7 11.6 0.40 0.46 9.03
50e 1373.8 29.5 88.7 86.7 -2.0 0.43 0.37 2.10
50h 651.0 46.2 98.9 96.2 -2.7 0.43 0.17 3.41
50i 2280.6 11.7 82.7 93.8 11.1 0.56 0.79 12.56
50j 6760.1 41.8 89.5 94.5 5.0 0.30 0.47 13.39
50k 4300.7 27.7 93.6 93.5 -0.1 0.58 0.56 1.03
501 6124.1 13.9 87.3 88.5 1.2 0.36 0.36 0.12
50m 1092.8 32.2 65.6 82.6 17.0 0.37 0.71 24.20
50n 3377.6 42.3 74.4 75.9 1.5 0.47 0.51 5.59
500 4633.1 25.0 92.8 89.7 -3.1 0.48 0.41 4.54
50p 5472.7 44.4 85.8 86.7 0.9 0.72 0.73 3.19
50s 1084.7 32.8 66.8 74.9 8.1 0.37 0.49 7.11
50t 2876.5 56.7 87.2 85.6 -1.6 0.67 0.63 5.17
50u 2409.3 32.1 86.9 99.8 12.9 0.46 0.99 44.88
50v 6395.7 25.3 80.9 88.8 7.9 0.46 0.59 14.19
50w 3212.4 29.6 83.9 93.8 9.9 0.40 0.66 18.87
50x 5344.7 45.3 76.6 81.9 5.3 0.52 0.58 9.93
50y 3765.4 8.2 65.6 70.1 4.5 0.40 0.46 3.58
50z 1673.0 8.7 66.4 63.1 -3.3 0.33 0.30 2.14
200 Area-based (Maplet) versus Point-based Accuracy Assessments
. The 0L3 and 0L4 classifications were assessed using both
150 point-based and area-based methods over the Toimi Drumlins
. Ecoregion (Figure 1, [50p]). A traditional point-based accu-
= . racy assessment was performed using PP100 reference pixels
S . * (n = 127) existent within this ecoregion extent. Point-based
3’" . accuracy metrics indicate that there was a significant differ-
5 0 p . - ence (Z = 2.03; p = 0.05) between the OL3 classification accu-
1 . . racy (87.9 percent; Kappa = 0.79) and the 0L4 classification
"é 0.0 . * ° M accuracy (95.3 percent; Kappa = 0.91). Producer’s and user’s
£ s 0 .l 20 v 30 S accuracies were high for both classifications within all three
S 50 . - * _ cover types (deciduous, coniferous, and grass). One exception
was the producer’s accuracy (14.3 percent; n = 7) for the oL4
* grass cover type (Table 3). However, the very few reference
-10.0

OL4 Ecoregions (n = 30)

Figure 5. Accuracy differentials across thirty oLa
ecoregions = (0L4 accuracy) - (0L3 accuracy). Dash
lines: £5.0 percent difference levels.
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locations skewed any attempt to explain error issues. Also,

classes with low PP100 sample numbers were indicative of

highly heterogeneous areas or under-representative classes.
The area-based assessment design incorporated

30 maplets randomly distributed throughout the one oL4

ecoregion (Toimi Drumlins). We found that the oL4 cover type

proportions were better correlated than o013 classifications,
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Taste 3. CuassiFication Metrics For Point-sasen Accuracy Assessment oF THE Toimi Drumuns (OL4) Ecorecion For Deciouous (DEC), Cownirerous (CON), ano
Grasstanp (GRS) Cover Types; Accuracy MeTrics IncLupe sotH Prooucers (P) ano Users (U) Accuracies (%), Overall Accuracy (%), ano Kappa Coerricients

CLASSIFICATION n DEC (P/U)

CON (P/U)

GRS (P/U) Accuracy Kappa

100.0 / 80.6
100.0 / 98.3

OL3 127
OL4 127

74.1/100.0
100.0 / 92.4

100.0 / 88.9
14.3 /100.0

87.9
95.3

0.78
0.91

especially with respect to the deciduous and coniferous
classes. The reference deciduous and coniferous proportions
across all 30 maplets were 51.7 percent and 40.7 percent,
respectively. The oL4 deciduous and coniferous proportions
of 44.7 percent and 54.8 percent can be compared to the
OL3 proportion of 75.8 percent and 19.6 percent across all
30 maplets. This extreme OL3 deciduous overestimation was
also apparent by visual comparison of both classifications
(Plate 1). A simple correspondence plot was used to compare
the deciduous and coniferous maplet areas comparing refer-
ence data and classification results for the oL4 (Figure 7). This
graph illustrates that the or4 classification (a) overestimated
areas of high (>30 percent) coniferous content, (b) underes-
timated areas with low (<50 percent) deciduous cover, and
(c) overestimated areas with high (>50 percent) deciduous
cover. Maplet regression analysis comparing OL3 deciduous
(r* = 0.34) and coniferous (r* = 0.37) classes with 0L4 decidu-
ous (r* = 0.49) and coniferous (r* = 0.65) classes indicated that
the oL4 results were superior to OL3 (Figure 8). The grass class
accounted for 3.5 percent of the total maplet area. Regression
coefficients showed that the ov4 classification had moderate
correlation with the reference dataset (r* = 0.58, SE = 6.2 ha),
whereas the 0L3 had no agreement (r* = 0.01, SE = 118.2 ha).
We explored the effect of varying pixel purity for maplet
reference pixels on overall accuracy using the point-hased
procedure within the 30 (5 x 5 km) maplet sites. Maplet pixels
were identified for pr with respect to one cover type across
six PP levels corresponding to =50 percent, =60 percent,
=70 percent, =80 percent, and =90 percent and 100 percent.
Results showed that accuracy values varied by 21 percent
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Figure 7. The correspondence between deciduous and
coniferous for reference maplets data (n = 30) across the
oL4. The line indicates a 1:1 correspondence.

with a minimum overall accuracy of 67.9 percent (=50 PP)
and a maximum of 89.6 percent (PP100 percent) (Table 4).
The PP100 class represented 7.4 percent of pixels within the
study area.

A research objective was to determine optimal maplet
resolutions and numbers (n) for classification assessments.
Resulting 0L4 regression coefficients for deciduous (r* = 0.34
to 0.48) and coniferous (r* = 0.44 to 0.65) across the five
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Figure 8. The regression coefficient results for (a and b) oL3 and (¢ and d) oL4 scale classifications for
deciduous and coniferous forests across the oL4.

Taste 4. Accuracy Metrics For MuitipLe Rererence Pixer Purity (PP)
Levers ror OL4 CuassiFication across 30 (5 % 5 km) mapLer sites. NoTe THAT
onty 7.4 Percent of Pixers were 100 Percent Homogeneous For One Cover

Tyee. Tue Masority Miass Represents tHe Stanparp “Majority Carl”
Commonry Usep 1o Laser Moperate-To-Coarse ResoLution PixeLs

MATRIX LL UL Accuracy Total
Class Kappa Kappa Kappa (%) Area (%)
Majority 0.40 0.39 0.42 67.9 100.0
PP50% 0.42 0.40 0.43 69.1 94.8
PP60% 0.49 0.47 0.51 72.9 75.4
PP70% 0.57 0.55 0.58 77.3 56.0
PP80% 0.64 0.62 0.66 81.6 38.3
PP90% 0.72 0.69 0.74 85.7 21.6
PP100% 0.79 0.75 0.83 89.6 7.4

maplet grid resolutions (1 x 1 to 5 x 5 km) are listed in

Table 5. For both cover types regression coefficients increased
significantly between 1.0 to 2.0 km resolutions and thereaf-
ter stabilized, suggesting maplet resolutions >1.0 km would
produce the highest correlation values. Using pixels coded to
a simple majority within all 30 maplets, we compared the 014
classifications using accuracy metrics generated from point-
based accuracy assessments for all five maplet resolutions.
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Taste 5. MapLer Recression Coerricients Mean Stanparo Error (SE), anp
Root Mean Souare Error (RMSE) Comearing OL4 (n = 30) CrassiFication
Resuits across THE OL3 Toimi Drumuin Ecorecion (Note THE ConsisTENTLY
Berter Resuirs ror Conirerous versus Deciouous Forest)

Resolution Cover Type n r SE (ha) RMSE (ha)
1x1km Deciduous 30 0.34 15.7 28.6
2 x 2 km Deciduous 30 0.48 58.4 100.3
3x 3 km Deciduous 30 0.44 139.4 214.3
4 x 4 km Deciduous 30 0.45 263.6 373.7
5% 5km Deciduous 30 0.48 411.8 560.5
1x1km Coniferous 30 0.44 10.9 26.7
2 x 2 km Coniferous 30 0.61 38.2 86.8
3 x 3 km Coniferous 30 0.60 85.3 181.9
4 x 4 km Coniferous 30 0.63 145.9 306.5
5 x 5 km Coniferous 30 0.65 2201 461.8

The results indicated that both accuracies (67.9 to 70.2 per-
cent) and Kappa (0.40 to 0.44) statistics remained relatively
stable across all resolutions (Table 6). The cover type pro-
portions remained constant except at finer resolutions (<4 x
4 km), where some lesser represented cover types (bare and
urban) dropped out completely (Table 7). The Producer’s and
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TasLe 8. Accuracy Metrics IncLuping Kappa Coerricient (KHAT) Lower Limit (LL) awp Upper Linit (UL),
Over Accuracy (ACC), ano Cover Type Percentaces ror Deciouous (DEC), Conirerous (CON), ano Grassianps (GRS)
across MapLets (v = 30) within OL4 rFor Five MapLeT ResoLuTions

Maplet Size KHAT LL KHAT UL KHAT ACC (%) DEC (%) CON (%) GRS (%)
5% 5km 0.40 0.39 0.42 67.9 54.7 40.4 3.5
4 x 4 km 0.40 0.38 0.42 68.3 54.0 41.7 3.1
3x3km 0.41 0.38 0.44 68.7 53.9 42.4 2.7
2% 2 km 0.42 0.38 0.46 69.8 52.8 44,2 2.6
1x1km 0.44 0.36 0.51 70.2 55.6 421 2.3

TasLe 7. Mean Cover Tvre Percentaces GeneraTED FroM 20 ITERATIONS
eact oF Ranoomiy Setectep 5 X 5 km MarLers From THe ORIGINAL
30 MarLeTs across THE OL4 Tomi Drumun Ecorecion 1o Assess THE
Impact on MapLer Numsers on Crassipication Resuirs; the Rance o
15 10 30 MapLeTs HAD LITTLE IMPACT on CrassiFication QuTcomEs.

30 Maplets 25 Maplets 20 Maplets 15 Maplets
DEC (%) 51.72 51.67 51.42 51.82
CON (%) 40.73 40.68 40.92 41.01
GRS (%) 4.56 4.69 4.62 4.20

User’s accuracies remained relatively unchanged across all
resolutions. Results also indicated no benetit associated with
maplet numbers >15 (Table 7). The spatial resolution of the
maplet had more significance as to the representation of pro-
portionally minor cover types when compared to the actual
number of maplets required to make statistically relevant
statements. The 5 x 5 km maplet with a count of =15 maplets
proved most relevant to the assessment oL4 classifications.

Conclusions

The issue of applying moderate-to-coarse spatial scale remote
sensor data for regional-local scale classifications has been
well documented in the literature. Overall, reported accura-
cies have been quite variable compared to that achieved from
finer spatial scale data. Herold et al. (2008) cited three global
landcover products that ranged from 66.9 percent to 78.3
percent in overall accuracy. To complicate matters, confidence
intervals may have previously been overestimated due to the
low number of reference samples and inherent positive bias
by ignoring spatial autocorrelation impacts in the reference
data sampling design. Also, accuracy values calculated at

the global scale are frequently not applicable at continental
scales. With this in mind, it was our intent to investigate the
mapping of coarser spatial resolution time-series imagery at
regional-local scales. Our findings indicate that classifica-
tion products generated from training sites at the local level
resulted in higher accuracy values across the majority of the
broader regional area when compared to those derived from
regional level training data. Our results include the caveat
that the reference data derived from the NLCD 2006 had inher-
ent error (not 100 percent accurate) and was highly spatially
auto-correlated. This same issue exists for the maplet data-
set where point-based accuracy metrics were generated for
comparisons.

Many global classification products employ accuracy
statements that are vague and non-site specific (Herold et al.,
2008). Employing the traditional point-based assessment
on these coarser data types to produce accuracy metrics has
numerous limitations. The assumption of “pure pixels” that
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underlies the standard approach of assessing error through a
contingency matrix approach is often invalid. In this study,
approximately 7 percent of the 250 m pixels across the study
area were homogenous with respect to one cover type. Due

to the limited number of 250 m homogenous pixels available
(n = 750) obtaining the minimum number of reference pixels
(i.e., 50 per class) for all four cover classes was not possible.
Also, error assessments based on homogeneous pixels make
no statements concerning the accuracy of the vast majority of
the pixels being evaluated. Supplementary information can be
obtained through the incorporation of area-based assessment
procedure to determine the goodness-of-fit. In this study, the
random distribution of these maplets allowed us to determine
the correlation of cover classes with the reference data. Also,
accuracy patterns were evident as cover types proportions
changed. Finally, we calculated pixel heterogeneity which
allowed us to create point-based error matrices that could
account for pixel purities ranging from 50 to 100 percent.
Although point-based accuracy methods may be adequate at
finer spatial data (i.e., 30 m Landsat) where the mixed pixel
issue is of lesser relevance, our results suggest the imple-
mentation of the maplet design for assessment of medium-
to-coarse resolution landcover over large regional extents.
Within maplet areas both site- and non-site-specific accuracy
metrics can be evaluated. Identification of all levels of refer-
ence pixel purity within these maplet areas allows the user to
better understand areas of confusion across a heterogeneous
landscape. For example, an area dominated with PP70 over
the majority of the map could be assessed using PP70 refer-
ence pixels to establish how well the analyst has mapped the
dominant pp level. Further research is needed to investigate
maplet reference data error and its atfect on the assessment of
global landcover products.
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